Note

Determination of Large-Order Spherical Coulomb Functions with an Argument Lying between the Origin and the Common Point of Inflection

1. Fundamental Equations

The spherical Coulomb functions satisfy the radial equation (see Ref. [1])

$$
\begin{equation*}
\left[\frac{d^{2}}{d \rho^{2}} \div\left(1-\frac{2 \gamma}{\rho}-\frac{L(L+1)}{\rho^{2}}\right)\right] u_{L}(\gamma, \rho)=0 \tag{1.1}
\end{equation*}
$$

They are defined in the domain $0<\rho<-\infty,-\infty<\gamma<+\infty$ for any nonnegative integer order: $L:-0,1, \ldots$.

Write, in the neighbourhood of the origin,

$$
\begin{equation*}
u_{J}=c_{\sigma} \rho^{\sigma} \exp \left(\alpha_{\sigma}\right), \tag{1.2}
\end{equation*}
$$

ϵ_{σ} being independent of ρ, and introduce (1.2) into Eq. (1.1). One has

$$
\begin{equation*}
\left(\frac{d \alpha_{o}}{d \rho}\right)^{2} \div \frac{d^{2} \alpha_{o}}{d \rho^{2}} \div \frac{2 \sigma}{\rho} \frac{d \alpha_{o}}{d \rho} \div 1-\frac{2 \gamma}{\rho}=0 \tag{1.3}
\end{equation*}
$$

if σ is one of the roots of the indicial equation for (1.1),

$$
\sigma^{2}-\sigma-L(L+1)=0
$$

i.e.,

$$
\begin{equation*}
\sigma_{1}=-L+1, \quad \sigma_{2}=-=-l . \tag{1.4}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
F_{L}(\gamma, \rho)-c_{\sigma_{1}} \rho^{\sigma_{1}} \exp \left(x_{c_{1}}\right), \quad G_{L}(\gamma, \rho)=c_{\sigma_{2}} \rho^{\sigma_{2}} \exp \left(x_{\sigma_{2}}\right), \tag{1.5a}
\end{equation*}
$$

where, according to the usual notation, $F_{L}(\gamma, \rho)$ and $G_{J}(\gamma, \rho)$ are respectively the reguiar and the irregular spherical Coulomb functions of order L.

When $\rho \rightarrow 0$, or $L \rightarrow \infty$, i.c., when $\dot{i}(2 \sigma) / \rho!\geqslant 1$, we can neglect $\left(d \alpha_{\sigma} / d \rho\right)^{2}$ in (1.3) and obtain the approximate solution

$$
\begin{equation*}
\frac{d \alpha_{\sigma}}{d \rho} \simeq \frac{\gamma}{\sigma}-\frac{\rho}{2 \sigma+1} \tag{1.6}
\end{equation*}
$$

Thus, considering (1.4), (1.5a) and (1.6),

$$
\begin{align*}
& F_{X}(\gamma, \rho) \xrightarrow[\rho \rightarrow 0]{ } c_{\sigma_{1}} \rho^{L+1}\left[1+\frac{\gamma}{L+1} \rho+\cdots\right], \tag{1.7a}\\
& G_{L}(\gamma, \rho) \xrightarrow[\rho \rightarrow 0]{ } c_{\sigma_{2}}\left(\frac{1}{\rho}\right)^{L} \times \begin{cases}{[1+2 \gamma \rho \log \rho+\cdots],} & L=0 \\
{\left[1-\frac{\gamma}{L} \rho+\cdots\right],} & L \neq 0\end{cases} \tag{1.7~b}
\end{align*}
$$

The limit for $G_{0}(\gamma, \rho)$ is obtained directly from (1.3) by putting $\sigma=\sigma_{2}=0$.
The limits (1.7) show (see Refs. [1], [2]) that the cocfficients $c_{\sigma_{2}}$ and $c_{\sigma_{2}}$ are given by

$$
\begin{equation*}
c_{\sigma_{1}}=\frac{\prod_{s=1}^{L}\left(1+\gamma^{2} / s^{2}\right)^{1 / 2}}{(2 L+1)!!} \times\left(\frac{2 \pi \gamma}{\rho^{2} \pi \gamma-1}\right)^{1 / 2}, \quad c_{\sigma_{2}}=\frac{1}{(2 L+1) c_{\sigma_{1}}} \tag{1.5b}
\end{equation*}
$$

The finite product in $c_{\sigma_{1}}$ is taken equal to 1 for $L=0$.
A better approximation $d \alpha_{\sigma} 0 / d \rho$ to $d \alpha_{\sigma} / d \rho$ can now be found. By differentiation of (1.6) with respect to ρ, one has

$$
\begin{equation*}
\frac{d^{2} \alpha_{\sigma}}{d \rho^{2}} \simeq\left(\frac{d \alpha_{\sigma}}{d \rho}-\frac{\gamma}{\sigma}\right) / \rho \tag{1.8}
\end{equation*}
$$

and, eliminating $d^{2} \alpha_{\sigma} / d \rho^{2}$ between (1.3) and (1.8),

$$
\begin{equation*}
\left(\frac{d \alpha_{\sigma}{ }^{0}}{d \rho}\right)^{2}+\frac{2 \sigma+1}{\rho} \frac{d \alpha_{\sigma}{ }^{0}}{d \rho}+1-\frac{\gamma}{\rho} \frac{2 \sigma+1}{\sigma}=0 \tag{1.9}
\end{equation*}
$$

The solution of Eq. (1.9) we are interested in, is, evidently, the one which goes into (1.6) when $L \rightarrow \infty$ (or $\rho \rightarrow 0$):

$$
\begin{equation*}
\frac{d \alpha_{\sigma}^{0}}{d \rho}=-\frac{\sigma+\frac{1}{2}}{\rho} \times\left\{1-\left[1+\frac{2 \gamma}{\sigma} \frac{\rho}{\sigma+\frac{1}{2}}-\left(\frac{\rho}{\sigma+\frac{1}{2}}\right)^{2}\right]^{12}\right\} \tag{1.10}
\end{equation*}
$$

The forms (1.5) for $F_{L}(\gamma, \rho)$ and $G_{L}(\gamma, \rho)$ are valid in an interval to the right of the origin where these functions are both positive or, what is the same thing, where α_{σ}, , $i=1,2$ and their derivatives are real functions of ρ. We find from (1.10) that such an interval is given for $\sigma_{i}, i=1,2$, by

$$
\begin{equation*}
0<\rho<\rho_{i}, \quad \rho_{i}=\left(\sigma_{i}+\frac{1}{2}\right) \times\left\{\gamma / \sigma_{i}+(-1)^{i+1}\left[\left(\gamma / \sigma_{i}\right)^{2}+1\right]^{1 / 2}\right\}, \quad i=1,2 . \tag{1.11}
\end{equation*}
$$

The $\rho_{i}, i=1,2$ are close to the common point of inflection of $F_{L}(\gamma, \rho)$ and $G_{L}(\gamma, \rho)$ (see Eq. (1.1)):

$$
\begin{equation*}
\rho_{0}=\gamma+\left[\gamma^{2}+L(L+1)\right]^{1 / 2} \tag{1.12}
\end{equation*}
$$

(all the other inflection points of these functions coincide with the zeros of $F_{L}(\gamma, \rho)$ and $G_{L}(\gamma, \rho)$, which interlace according to a well-known theorem).

Eqs. (1.11) and (1.12) imply

$$
\begin{equation*}
\rho_{2}<\rho_{0}<\rho_{1} \tag{1.13}
\end{equation*}
$$

Also, when $L \rightarrow \infty, \rho_{1}=\rho_{2}=\rho_{0} \rightarrow \infty$.
Obviously, the approximation (1.10) to $d \alpha_{\sigma} / d \rho$ is good only for values of ρ away from ρ_{0}. This does not matter in the calculations that will follow, since they are performed for values of ρ smaller than ρ_{0}.

Now we shall obtain solutions in series for α_{σ} and $d \alpha_{\sigma} / d \rho$. Let

$$
\begin{equation*}
\frac{d \alpha_{\sigma}}{d \rho}=\sum_{n=1}^{\infty} a_{n} \rho^{\prime n} \tag{1.14}
\end{equation*}
$$

Substitute (1.14) into Eq. (1.3) and equate to zero the algebric sums of the $\left\{a_{n}\right\}$ belonging to the same ρ^{n}. One has

$$
\begin{gather*}
a_{0}=\gamma / \sigma, \quad a_{1}=-\left(1+a_{0}^{2}\right) /(2 \sigma+1), \tag{1.15a}\\
a_{n}(2 \sigma+n)+\sum_{k=0}^{n-1} a_{k} a_{n-k-1}=0, \quad n=2,3, \ldots \tag{1.15b}
\end{gather*}
$$

Also

$$
\begin{equation*}
\alpha_{0}=\sum_{n=0}^{\infty} \frac{a_{n}}{n+1} \rho^{n+1} . \tag{1.16}
\end{equation*}
$$

The integration constant is zero in accordance with Eqs. (1.7).
The developments (1.14) and (1.16) can only be used for $\sigma=\sigma_{1}=L+1$. In the case of $\sigma=\sigma_{2}=-L$, the coefficient of $a_{(2 L)}$ in (1.15b) vanishes and the recurrence formula breaks down (for $\gamma=0$, however, $a_{(2 k)}=0, k=0,1, \ldots$ and Eqs, (1.15) are still valid for $\sigma=\sigma_{2}$ (see Ref. [3])).
$d \alpha_{v 2} / d \rho$ is determined in Section 3 by iteration.

2. Convergence of the Series for $\alpha_{\sigma_{1}}$ and $d \alpha_{\sigma_{1}} / d \rho$

Expand, by means of the binomial series, $d \alpha_{\sigma_{1}}^{0} / d \rho$ defined in (1.10). We find $d \alpha_{c_{1}}^{0} / d \rho=\sum_{n-0} a_{n}{ }^{0} \rho^{n}$, where the $\left\{a_{n}{ }^{0}\right\}$ can be obtained directly from Eq. (1.9) in the same way as the $\left\{a_{n}\right\}$ were derived from Eq. (1.3):

$$
\begin{equation*}
a_{n}^{0}=a_{n}, \quad n=1,2 ; \quad a_{n}^{0}\left(2 \sigma_{1}+1\right)+\sum_{k=0}^{n-1} a_{k}^{0} a_{n-k-1}^{0}=0, \quad n=2,3, \ldots \tag{2.1}
\end{equation*}
$$

Now, as we shall prove below,

$$
\begin{equation*}
\left|a_{k}\right| \leqslant\left|a_{k}{ }^{0}\right|, \quad k=0,1, \ldots \tag{2.2}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\sum_{k=0}^{\infty}\left|a_{k}\right| \rho^{k} \leqslant \sum_{k=0}^{\infty}\left|a_{k}^{0}\right| \rho^{k} . \tag{2.3}
\end{equation*}
$$

But the expansion for $d \alpha_{\sigma_{1}}^{0} / d \rho$ (as the binomial series itself) converges absolutely and uniformly in any interval of the variable ρ where the inequalities

$$
\begin{equation*}
-1<\frac{2 \gamma}{\sigma_{1}} \cdot \frac{\rho}{\sigma_{1}+\frac{1}{2}}-\left(\frac{\rho}{\sigma_{1}+\frac{1}{2}}\right)^{2}<+1 \tag{2.4}
\end{equation*}
$$

are both satisfied. Conditions (2.4) are fulfilled for any ρ belonging to the interval $0<\rho<\rho_{1}$ (see (1.11)) if $\sigma_{1}>\gamma$.

Thus (see Ref. [4; p. 399]), by (2.3), the series (1.14) and (1.16) for $d \alpha_{\sigma_{1}} / d \rho$ and for α_{σ}. also converge uniformly and absolutely in $0<\rho<\rho_{1}$ if

$$
\begin{equation*}
\sigma_{1}>\gamma . \tag{2.5}
\end{equation*}
$$

Consider now the proof of relations (2.2). From Eqs. (1.15) for $\sigma=\sigma_{1}$ and (2.1) it can be shown by induction that
$a_{k}(\gamma)=-\left(-\frac{\gamma}{|\gamma|}\right)^{k+1}\left|a_{k}(\gamma)\right|, \quad a_{k}{ }^{0}(\gamma)=-\left(-\frac{\gamma}{|\gamma|}\right)^{k+1}\left|a_{k}{ }^{0}(\gamma)\right|, \quad k=0,1, \ldots$.
Suppose now that (2.2) are true for $k=0,1, \ldots, n-1$ with $n>1$ and introduce (2.6) respectively into (1.15b) and (2.1). One has, since $2 \sigma_{1}+1<2 \sigma_{1}+n$ for $n>1$,

$$
\left|a_{n}\right|=\frac{1}{2 \sigma_{1}+n} \sum_{k=0}^{n-1}\left|a_{k}\right|\left|a_{n-k-1}\right| \leqslant\left|a_{n}{ }^{0}\right| .
$$

Relations (2.2), true for $k=0,1$ (see (2.1)), can now be established by mathematical induction.

TABLE I

L	γ	ρ	$d \alpha_{\sigma_{1}} / d \rho$	n	$\alpha_{\sigma_{1}}$
10	0.5	1	$0.19755301 \times 10^{-2}$	7	$0.23706501 \times 10^{-1}$
10	5	1	0.40390207	9	0.42893424
30	5	10	$0.25552066 \times 10^{-2}$	15	0.81562269

Note. The truncated series $d \alpha_{\sigma_{1}} / d \rho=(1 / \rho) \sum_{k=0}^{n-1} A_{k}$ and $\alpha_{\sigma_{1}}=\sum_{k=0}^{n-1} A_{k} /(k+1)$ are used in the determination of $d \alpha_{\sigma_{1}} / d \rho$ and $\alpha_{\sigma_{1}}$. The $A_{k}=a_{k} \rho^{k+1}, k=0,1, \ldots, n-1$ are obtained from A_{0} and A_{1} by recurrence (see (1.15b)) with $\sigma=L+1: A_{k}[2(L+1)+k]+\sum_{i=0}^{k-1} A_{i} A_{k-1-i}=0$. The column headed by n gives the number of terms kept in the series for $d \alpha_{\sigma_{1}} / d \rho$ which satisfy the condition $\operatorname{Max}\left(\left|A_{k-1}\right|,\left|A_{k}\right|\right)>\rho \times 10^{-8}$, so that $F_{L}(\gamma, \rho)$ can be calculated ${ }^{1}$ with 8 exact significant figures.

Table I shows $d \alpha_{\sigma_{1}} / d \rho$ and $\alpha_{\sigma_{1}}$ for different L, γ and ρ. In the examples given, $L \gg \rho, L \gg \mid \gamma ;$ so that the conditions $0<\rho<\rho_{1}$ and $\sigma_{1}>\gamma$ are always satisfied.

The familiar, stable three-term recurrence formula (see Refs. [1], [2]) is used in the determination of $F_{0}(\gamma, \rho)$ from $F_{L}(\gamma, \rho)$ in Table II.

TABLE II

L	γ	ρ	$F_{L}(\gamma, \rho)$	$F_{0}(\gamma, \rho)$
10	0.5	1	$0.33554924 \times 10^{-10}$	0.51660150
10	5	1	$0.13750509 \times 10^{-1.3}$	$0.20413012 \times 10^{-\frac{1}{2}}$
30	5	10	$0.32745345 \times 10^{-14}$	0.91794492

Note. $F_{L}(\gamma, \rho)$ is obtained from (1.5). $F_{L-1}(\gamma, \rho)$ (necessary to the calculation of $F_{0}(\gamma, \rho)$ by recurrence) is obtained from $\left[1+(\gamma / L)^{2}\right]^{1 / 2} F_{L-1}=\left[(2 L+1) / \rho+\gamma / L+d x_{a_{1}}{ }^{\prime} d \rho\right] F_{L}$, derived from (1.5) and $\left[1+(\gamma / L)^{2}\right]^{1 / 2} F_{L-1}=\left(L_{/} \rho+\gamma / L+d_{i}^{\prime} d \rho\right) F_{L}$ (see Ref. [1]).

3. Determination of $d x_{\sigma} / d \rho$ by an Iterative Method

To simplify the notation, represent by $f^{\prime}, f^{\prime \prime}, \ldots, f^{(n)}$ the first n derivatives of any function f of ρ and write

$$
\begin{equation*}
b=\frac{d \alpha_{r}}{d \rho} \tag{3.1}
\end{equation*}
$$

In accordance with these definitions, Eq. (1.3) becomes

$$
\begin{equation*}
\psi\left(b, b^{\prime}\right)=b^{2}+b^{\prime}+\frac{2 \sigma}{\rho} b+1-\frac{2 \gamma}{\rho}=0 \tag{3.2}
\end{equation*}
$$

The first approximation b_{0} to b is taken equal to the function (1.10), i.e.,

$$
\begin{equation*}
b_{0}=\frac{d \alpha_{o}{ }^{0}}{d \rho} \tag{3.3}
\end{equation*}
$$

Suppose now that b_{n} is a better approximation to b and write

$$
\begin{equation*}
h=b-b_{n} \tag{3.4}
\end{equation*}
$$

From (1.8), $h^{\prime} \simeq h / \rho$, and $\psi\left(b, b^{\prime}\right) \simeq \psi\left(b_{n}+h, b_{n}^{\prime}+h / \rho\right)$ or, expanding ψ by its Taylor's series up to terms of first order in h,

$$
\begin{equation*}
\psi\left(b, b^{\prime}\right) \simeq \psi\left(b_{n}, b_{n}^{\prime}\right)+-\left[\left(\frac{\partial \psi}{\partial b}\right)_{(n)}+\frac{1}{\rho}\left(\frac{\partial \psi}{\partial b^{\prime}}\right)_{(n)}\right] \tag{3.5}
\end{equation*}
$$

where the subscript (n) means that the partial derivatives are taken at point $\left(b_{n}, b_{n 2}^{\prime}\right)$.

Since b is a solution of Eq. (3.2), $\psi\left(b, b^{\prime}\right)=0$ in (3.5). The right-hand side of (3.5), however, is not necessarily zero, though we can make it vanish by substituting for b in (3.4) an appropriate new function b_{n+1} of ρ. We have, then,

$$
\begin{equation*}
b_{n+1}=b_{n}-\frac{\psi\left(b_{n}, b_{n}^{\prime}\right)}{\left(\frac{\partial \psi}{\partial b}\right)_{(n)}+\frac{1}{\rho}\left(\frac{\hat{o} \psi}{\partial b^{\prime}}\right)_{(n)}} \tag{3.6a}
\end{equation*}
$$

or, by (3.2),

$$
\begin{equation*}
b_{n+1}=-\frac{1}{2}\left(b_{n}^{\prime}-b_{n}^{2}-b / \rho+1-2 \gamma / \rho\right) /\left[b_{n}+\left(\sigma+\frac{1}{2}\right) / \rho\right], \quad n=0,1, \ldots . \tag{3.6b}
\end{equation*}
$$

Eq. (3.3) with Eqs. (3.6b) establish an iterative process for the determination of $\boldsymbol{b}\left(=d \alpha_{\sigma} / d \rho\right)$.

Note that the calculation of b_{n} requires the first n derivatives of b_{0}, the first $n-1$ derivatives of b_{1}, \ldots, the first derivative of b_{n-1}. These functions are relatively simple to derive from Eqs. (3.3) and (3.6b) for n small. But it is better to find b_{0}^{\prime} directly from Eq. (1.9):

$$
\begin{equation*}
b_{0}^{\prime}=\left(b_{0}-\gamma / \sigma\right) /\left[\rho+\left(\rho^{2} b_{0}\right) /\left(\sigma+\frac{1}{2}\right)\right] . \tag{3.7}
\end{equation*}
$$

The $b_{0}^{(m)}, m=2,3, \ldots$ are obtained successively from (3.7).
Consider, now, the convergence of the iterative process. Subtract $\psi\left(b, b^{\prime}\right)=0$ from $\psi\left(b_{n}, b_{n}^{\prime}\right)$ in the numerator of (3.6a) and develop $\psi\left(b, b^{\prime}\right)=\psi\left(b_{n}+h, b_{n}^{\prime}+h^{\prime}\right)$ (see (3.4)) by its Taylor's series. We find

$$
\begin{equation*}
b-b_{n+1}=-\frac{1}{2}\left[\left(b-b_{n}\right)^{2}+\left(b^{\prime}-b_{n}^{\prime}\right)-\left(b-b_{n}\right) / \rho\right] /\left[b_{n}+\left(\sigma+\frac{1}{2}\right) / \rho\right] \tag{3.8}
\end{equation*}
$$

Eq. (3.8) shows that the iterative process described above is a first order one. Thus, if b_{a} is an approximation to b, we have $b_{a}-b_{n}=M\left(b_{n}-b_{n-1}\right), b_{a}-b_{n-1}=$ $M\left(b_{n-1}-b_{n-2}\right)$ or, eliminating M,

$$
\begin{equation*}
b_{a}=\frac{b_{n} b_{n-2}-b_{n-1}^{2}}{b_{n}-2 b_{n-1}+b_{n-2}} . \tag{3.9}
\end{equation*}
$$

Eq. (3.9) represents Aitken's δ^{2}-process and can be used to accelerate the convergence of the $\left\{b_{n}\right\}$ (see Ref. [2; p. 18]).

Table III illustrates the iterative process for $\sigma=\sigma_{2}=-L$. The function b_{a} is obtained from (3.9) with $n=3$.

TABLE III

L	γ	ρ	b_{0}	b_{3}	b_{a}
10	0.5	1	$0.26319435 \times 10^{-2}$	$0.26336925 \times 10^{-2}$	$0.26337165 \times 10^{-2}$
10	5	1	-0.43730346	-0.43744757	-0.43744757
30	5	10	$0.28262126 \times 10^{-2}$	$0.28319918 \times 10^{-2}$	$0.28320015 \times 10^{-2}$

Finally, we obtain $G_{L}(\gamma, \rho)$ from the Wronskian for this function and for $F_{L}(\gamma, \rho)$ (see Refs. [1, 2]) and from Eqs. (1.5). We find

$$
\begin{equation*}
F_{L} G_{L}\left(\frac{2 L+1}{\rho}+\frac{d x_{G_{1}}}{d \rho}-\frac{d \alpha_{\sigma_{2}}}{d \rho}\right)=1 . \tag{3.10}
\end{equation*}
$$

The examples shown in Table IV fulfill the conditions $0<\rho<\rho_{2}$ (see (1.11) and $L+1>\gamma$ (see (2.5)). No attempt is made to obtain $G_{0}(\gamma, \rho)$ from $G_{L}(\gamma, \rho)$ by recurrence because such a "backward" process is numerically unstable.

TABLE IV

γ	ρ	L	$G_{L}(\gamma, \rho)$	L	$G_{L}(\gamma, \rho)$
0.5	1	10	$0.14191819 \times 10^{10}$	4	0.22443×10^{3}
5	1	10	$0.33296743 \times 10^{13}$	8	0.11777×10^{12}
5	10	30	$0.50065701 \times 10^{14}$	13	0.82766×10^{3}

Note. Both columns headed by $G_{L}(\gamma, \rho)$ are obtained from Eq. (3.10) taking $d \alpha_{G_{2}} / d \rho \simeq b_{a}$, givern by (3.9) with $n=3$. The convergence of the iteration is not so good when L becomes closer to ρ and $\mid \gamma$ '. That is why the 2 nd column for $G_{L}(\gamma, \rho)$ shows only 5 exact significant figures.

All the calculations were performed in the Coimbra University Sigma 5 Xerox computer using a double-precision FORTRAN-IV programme.

References

1. A. Messiah :"Quantum Mechanics," Vol. 1, Appendix B, North Holland, Amsterdam, 1961.
2. M. Abramowitz and I. A. Stegun, "Handbook of Mathematical Functions," p. 537 n., Dover, New York, 1965.
3. P. df A. P. Martins, .I. Comput. Phys. 25 (1977), 194-198.
4. R. Courant, "Differential and Integral Calculus," Vol. 1, Blackie, London/Glasgow, 1948.

Recfivfd: October 19, 1977: rfvisfd: June 21, 1978
Pedro de A. P. Martins
Departamento de Fisica
Universidade de Coimbra

