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Note 

Determination of Large-Order Spherical Coulomb Functions with an 
Argument Lying between the Origin and the Common Point of Inflectian 

1. ~UNDAMHWAL EQUATIONS 

The spherical Coulomb functions satisfy the radial equation (see Ref. [l]) 

[-$ .: (1 -- ?F - “(z$2j] u,(y, p) = 0. (I.!) 

They are defined in the domain 0 < p < -+ KI, --co < y CC +x for any non- 
negative integer order: L :: 0, l,... . 

Write, in the neighbourhood of the origin, 

111. x GP” exp(4, (1.2) 

I:, being independent of p, and introduce (I 2) into Eq. (1.1). One has 

( d% 2 
2p- 1 .- ! --0 d”a -:- - 20 -” da 

Lfp2 
+ 1 - = 0 

P dP 
.$ (1.3j 

if n is one of the roots of the indicial equation for (1 .l), 

i.e.. 

Thus, 

G(Y, p) i cmIpo’ exp(~J, GAY, P) -= rozpuD ew((y,J, (1 .Stl) 

where, according to the usual notation, FL(y, p) and G,.(y, p) are respectively the 
reguiar and the irregular spherical Coulomb functions of order L. 

When p -+ 0, or L --t aa, i.c., when ;(20)!p j > 1, we can neglect (d;~,/dp)~ in (1.3) 
and obtain the approximate solution 

da Y P --z~----~ 
4 u 20 -/- 1 (l-6) 
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Thus, considering (1.4), (1.5a) and (1.6), 

FL(Y> P> xii+ %P L+l [ 1 + (1.7a) 

[l + 2yp log p + -*-I, L = 0, 
GL(Y, P) 3 ~2 1 ++ . ..I. L. + 0. (1.7b) 

The limit for G,(y, p) is obtained directly from (1.3) by putting u = U% = 0. 
The limits (1.7) show (see Refs. [I], [2]) that the coefficients co1 and cnz are given by 

(il = lx, (1 + y21s2Y’” 1 ‘2 
c (2L+ I)!: x ,2?..~ ’ % = ( 1 (2L: l)C~, * (1-5b) 

The hnite product in cYI is taken equal to 1 for L = 0. 
A better approximatron dol,O/dp to daddp can now be found. By differentiation of 

(1.6) with respect to p, one has 

pBo1, - da, 
! 

r 
dp2 - dp u p. Ii 

and, eliminating d2ao/dp2 between (1.3) and (1 .S), 

dolo 2 ( ) --AL 
dP 

+ 

U-8) 

The solution of Eq. (1.9) we are interested in, is, evidently, the one which goes into 
(1.6) when L ---f co (or p + 0): 

The forms (1.5) for FL(~, p) and G,(y, p) are valid in an interval to the right of the 
origin where these functions are both positive or, what is the same thing, where aO. , 
i = 1,2 and their derivatives are real functions of p. We find from (1.10) that such an 
interval is given for cri , i = 1,2, by 

0 < p < pi, pi = (Ui + 6) x {y/q + (-l>i’“[(y/o$ + I]‘/“}, i = 1,2. 
(1.11) 

The pi , i = 1,2 are close to the common point of inflection ofFL(y, p) and GL(y, p) 
(see Eq. (1.1)): 

PO = y + [y” + L(L + 1)P’” (1.12) 

(ah the other inffection points of these functions coincide with the zeros of FL(~, p) 
and G&J, p), which interlace according to a well-known theorem). 
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Eqs. (1.11) and (1.12) imply 

P2 -=c PO < Pr . (1.13) 

Also, when L + co, p1 = pB = p. * co. 
Obviously, the approximation (1.10) to dz,/dp is good only for values of p away 

from p. e This does not matter in the calculations that will follow, since they are 
performed for values of p smaller than p. . 

Now we shall obtain solutions in series for 01, and dcx,/dp. Let 

Substitute (1.14) into Eq. (1.3) and equate to zero the algebric sums of the (a,> 
belonging to the same p”. One has 

a0 = ~15 a, = -(I + aoe)/(2a j I), (1.I5a) 
n-1 

&Go t- n) + C akan-12-l = 0, Fl = 2, 3,... . (1.15bj 
Ii=0 

AlSO 

0.0 = i. * p”fl. (1.16j 

The integration constant is zero in accordance with Eqs. (1.7). 
The developments (1.14) and (1.16) can only be used for u = o1 = L + I ~ In the 

case of G = c’p = -L, the coefficient of a~,~) in (1.15b) vanishes and the recurrense 
formula breaks down (for y = 0, however, acnCZ:) = 0, k = 0, l,... and Eqs. (I ,15) 
are still valid for (T = u2 (see Ref. [3])). 

daol,,/dp is determined in Section 3 by iteration. 

2. CONVERGENCE OF TKE SERIES FOR zml. AND dm,Jdp 

Expand, by means of the binomial series, do$Jdp defined in (1.10). We fin 
duzl/dp = Cnmo anope, where the {ano> can be obtained directly from Eq. (1.9) in the 
same way as the (a,] were derived from Eq. (1.3): 

n-1 
a.O = a d m, n - 1,2; a,°C2a, + 1) + C akoa~~~,~, = 0, II = 2, 3,,.. . (2.a) 

R-0 

Now, as we shall prove below, 

141 d IakoI, k = 0, I,... . (2.2) 
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Therefore, 

(2.3) 

But the expansion for d$/dp (as the binomial series itself) converges absolutely and 
uniformly in any. interval of the variable p where the inequalities 

--I <p -*-(*jp<+1 
are both satisfied. Conditions (2.4) are fulfilled for any p belonging to the interval 
0 < p < p1 (see (1.11)) if (3r > y. 

Thus (see Ref. [4; p. 399]), by (2.3), the series (1.14) and (1.16) for da,Jdp and for 
CL~. also converge uniformly and absolutely in 0 < p < p1 if 

Consider now the proof of relations (2.2). From Eqs. (1.15) for cr = o1 and (2.1) 
it can be shown by induction that 

6’) = - (- y$$+’ 1 d’)i, h”(y) = - (- &)k+l 1 ako(y)[, k = 0, I,... . 
(2.6) 

Suppose now that (2.2) are true for k = 0, l,..., y1 - 1 with YE > 1 and introduce (2.6) 
respectively into (1.15b) and (2.1). One has, since 2~, + I < 20, + IZ for IZ > 1, 

l4.l = & z1 I 4 I I as-k-l I d I ano I. 
b-0 

Relations (2.2), true for k = 0, 1 (see (2. l)), can now be established by mathematical 
induction. 

TABLE I 

L Y P dyidp n % 1 

10 0.5 1 0.19755301 X 10-s 7 0.23706501 x 10-l 

10 5 1 0.40390207 9 0.42893424 

30 5 10 0.25552066 x lo-? 15 0.81562269 

Note. The truncated series daol/dp = (l/p) X;L: Afi and CC, = EiIi A,/(k + 1) are used in the 
determination of d+Jdp and a, 1 . The Ali = akpk+l, k = 0, 1: . . . . n - 1 are obtained from A, and Al 
by recurrence (see (1.15b)) with v = L + 1: A,[Z(L + 1) + k] + 2::: AiAP--l--i = 0. The column 
headed by n gives the number of terms kept in the series for da0 /dp which satisfy the condition 
Max(l A,-, !, I As [) > p x 1O-S, so that FL(~, p) can be calculated’with 8 exact significant figures. 
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Table I shows dq,/dp and oiUl for different L, y and p. In the examples given? 
L > p, L > i y i so that the conditions 0 < p < pI and or > y are always satisfied, 

The familiar, stable three-term recurrence formula (see Refs. [I], 127) is used in the 
determination of F,(y, p) from FL(y, p) in Table II. 

TABLEII 

10 0.5 I 0.33554924 x IO-10 0.51660150 

10 5 1 G.13750509 x lo-‘” 0.20413012 :’ lo-” 

30 5 10 0.32745345 x l@-la 0.91794492 

No/e. F&j, pj is obtained from (1.5). FL-~(~, p) (necessary to the calculation of F&, p) by ye- 
currence) is obtained from [l + (~/Qz]‘~ FLml = [(2L + l),‘p + y/L + dzaikip] FL ~ derived from 
(1.5) and [I f (n’.L)z]l/z FL-, = (L/p + y/L + d8p)Fr (see Ref. [I]). 

3. DETERMINATION OF dq’dp BY AN ITERATIVE METHOD 

To simplify the notation, represent by f ‘, f “,...) f tn) the first n derivatives of any 
function f of p and write 

(3.1) 

In accordance with these definitions, Eq. (1.3) becomes 

#(b, b’) = b” + b’ + $ b + I - 5 = 0. 

The first approximation b, to b is taken equal to the function (1. IO), i.e., 

(3.2) 

(3.3) 

Suppose now that b, is a better approximation to b and write 

h = b - b,,, _ :\3.4) 

From (1.Q h’ N h,lp, and #(b, b’) ‘v s,!r(b, + h, b:, f h/p) or, expanding + by its 
Taylor’s series up to terms of first order in lz, 

where the subscript (n) means that the partial derivatives are taken at point (6, , b:,). 
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Since b is a solution of Eq. (3.2), #(b, b’) = 0 in (3.5). The right-hand side of (3.5), 
however, is not necessarily zero, though we can make it vanish by substituting for b 
in (3.4) an appropriate new function brLfl of p. We have, then, 

(3.6a) 

or, by (3.2), 

b ra+l = -+(bk - 6,’ - blp + 1 - 2ylp)l[b, $- (0 -I- Npl, n = 0, l,... . 
(3.6b) 

Eq. (3.3) with Eqs. (3.6b) establish an iterative process for the determination of 
b (-&q&p). 

Note that the calculation of b,, requires the first y1 derivatives of b,, , the first n - 1 
derivatives of b, ,..., the first derivative of b,-, . These functions are relatively simple 
to derive from Eqs. (3.3) and (3.6b) for n small. But it is better to find b; directly from 
Eq. (1.9): 

4 = (h, - Y/‘o)/[P 4 co”W(~ + 911. (3.7) 

The bp’, m = 2, 3,... are obtained successively from (3.7). 
Consider, now, the convergence of the iterative process. Subtract #(b, b’) = 0 

from #(b, , b:,) in the numerator of (3.6a) and develop #(b, b’) = #(bn + h, bi + Ii) 
(see (3.4)) by its Taylor’s series. We find 

b - b,+l = -$[(b - b,)” + (b’ - 6.;) - (b - b,!/pll[b, + (Q + +)/PI. (3.8) 

Eq. (3.8) shows that the iterative process described above is a first order one. Thus, 
if b, is an approximation to b, we have 6, - b, = M(b, - b,n-l), b,, - b,-l = 
M(b,-l - b,-,) or, eliminating M, 

b,b,-z - b:-, 
ba = b, - 2b,ml $ b,-, ’ (3.9) 

Eq. (3.9) represents Aitken’s @-process and can be used to accelerate the convergence 
of the {b,) (see Ref. [2; p. 18 1). 

Table III illustrates the iterative process for u = a, = -L. The function b, is 
obtained from (3.9) with rz = 3. 

TABLE III 

L Y P bo b, 4, 

10 0.5 1 0.26319435 x 1O-2 0.26336925 x 1O-2 0.26337165 x 10-e 

10 5 1 -0.43730346 -0.43744757 -0.43744757 

30 5 10 0.28262126 x lo-” 0.28319918 x 10-Z 0.28320015 x lo-” 
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Finally, we obtain G,(y, p) from the Wronskian for this function and for FL@/, p) 
(see Refs. [I, 21) and from Eqs. (1.5). We find 

The examples shown in Table IV fulfill the conditions 0 < p < pa (see (J .ll) and 
L + 1 > y (see (2.5)). No attempt is made to obtain G&y, p) from GL(y, p) by 
recurrence because such a “backward” process is numerically unstable. 

TABLE IV 

Y P L GL.(Y, ~1 L GLb, fd 

_- 

0.5 1 10 0.14191819 X 1010 4 0.22443 x IO3 

5 1 10 0.33296743 x 1Ol3 8 0.11777 x IO” 

5 10 30 0.50065701 x 10la 13 0.82766 x lOa 

Note. Both columns headed by GL(y, p) are obtained from Eq. (3.10) taking &,/dp cr: b, , giver1 
by (3.9) with it = 3. The convergence of the iteration is not so good when L becomes closer to p 
and 1 y ‘. That is why the 2nd column for G&, pj shows only 5 exact significant figures. 

Ail the calculations were performed in the Coimbra University Sigma 5 Xerox 
computer using a double-precision FORTRAN-IV progamme. 
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